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IL_
THE PROCESSES INVOLVED IN DESIGNING SOFTWARE

Robin Jeffries, Althea A. Turner,
Peter G. Poison

University of Colorado
and

Michael E. Atwood
Science Applications, Inc., Denver

The task of design Involves a complex set of processes. Starting from a

global statement of a problem, a designer must develop a precise plan for a

solution that will be realized in some concrete way, e.g., as a building or as

a computer program. Potential solutions are constrained by the need to

eventually map this plan Into a real-world instantlation. For anything more

than the most artificial examples, design tasks are too complex to be solved

directly. Thus, an important facet of designing Is decomposing a problem Into

more manageable subunits. Design of computer systems, software design, is the

particular design task to be focused on in this paper.

Software design is the process of translating a set of task requirements

(functional specifications) into a structured description of a compuier

program that will perform the task. There are three major elements of this

description. First, the specifications are decomposed Into a collection of

modules, each of which satisfies part of the problem requirements. This Is

often referred to as a modular decomposition. Second, the designer must

specify the relationships and Interactions among the modules. This Includes

the control structures, which indicate the order in which modules are

activated and the conditions under which they are used. Finally, a design
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Includes the data structures Involved In the solution. One can think of the

original goal-oriented specifications as defining the properties that the

solution must have. The design Identifies the modules that can satisfy these

properties. How these modules are to be implemented Is a programming task,

which follows the design task.

This paper presents a theory of the global processes that experts use to

control the development of a software design. After a review of some relevant

literature, the theory is described in detail. Thinking aloud protocols

collected from both expert and novice designers on a moderately complex

problem provide evidence for these theoretical Ideas. Finally, we speculate

on how such processes might be learned.

RESEARCH ON DESIGN AND PLANNING

While there has been little research which focuses directly on problem

solving processes in software design, there are a number of research areas

which are peripherally related. The first of these, formal software design

methodologies, Is Indicative of the guidelines which experts In the field

propose to structure the task of designing. The second area, automatic

programming, provides a detailed analysis of the task from an artificial

Intelligence viewpoint. Finally, research on planning and design gives

Insight into planning processes which may be general across domains.

'1
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Software Design Methodologies

There are two reasons for considering the professional literature in this

field. A reasonable model of performance in any domain ought to relate to

accepted standards of good practice In that domain (Kintsch, 1980). These

formalized methods were written by experts in the area trying to convey to

others the procedures they use to perform the task. In addition, most expert

designers are familiar with this literature and may incorporate facets of

these methodologies into their designs.

Software design involves generating a modular decomposition of a problem

that satisfies the requirements described In Its specifications. Design

methods provide different bases for performing modular decompositions. There

are two prevailing views In the literature as to what this basis should be.

Both positions prescribe problem reduction approaches to the design process.

One focuses on data structures and the other on data flow. The various

methodologies differ in the nature and specificity of the problem reduction or

decomposition operators and of the evaluation functions for determining the

adequacy of alternative decompositions.

I With the data-structure oriented approaches (e.g., Jackson, 1975;

Warnier, 1974), a designer begins by specifylng the Input and output data

structures according to certain guidelines. A modular decomposition of a

problem Is identified by deriving the mapping between the Input and output

data structures. Because such methods Involve the derivation of a single

"correct" decomposition, there is no need for evaluation criteria or the

comparison of alternative decompositions.

3
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Data-flow oriented approaches (Yourdon and Constantine, 1975; Myers,

1975) are a collection of guidelines for Identifying trial decompositions of a

problem. Thus, these methods are more subjective, allowing a designer to

exercise more judgment. As a result, numerous heuristics for evaluating

potential decompositions are used with these methods. Examples of such

evaluation guidelines include: maximizing the Independence and cohesion of

Individual modules, providing a simple (as opposed to general) solution to tne

current subproblem, etc. These guidelines control the evaluation of possible

solutions to a design problem and the generation of new alternative designs.

Most formal software design methodologies require that the design proceed

through several Iterations. Each Iteration is a representation of the problem

at a more detailed level. That is, the initial decomposition Is a schematic

description of the solution. This becomes more detailed in the subsequent

Iterations. In general, this mode of decomposing the problem leads to a top-

down, breadth-first expansion of a design.

There are competing views that prescribe different modes of expansion.

Some of these are characterized by such terms as "bottom-up", "middle-out", or

"Inside-out" (Boehm, 1975). Such positions have been developed in response to

what some Individuals feel are unsatisfactory properties of a top-down

expansion. There are problems In which It is necessary to understand certain

crucial lower-level functions in order to Identify high level constraints on

the design. These alternative modes of expansion may be used by a designer in

problems for which an Initial decomposition Is difficult to derive. There are

undoubtedly problems for which each of these methodologies ;s particularly

I



suited. However, the formal literature on software design lacks a mapping

between types of problems and the appropriate design methodology.

Automatic Programming Systems

Another source of information about the task of software design comes

from automatic programming systems. The term "automatic programming" has been

used to refer to activities ranging from the design and development of

algebraic compilers to systems that can write a program from information given

in the form of goal-oriented specifications (Biermann, 1976; Heldorn, 1976).

The latter represent attempts to specify the procedures of software design in

a mechanizable form.

Simon's (1963, 1972) Heuristic Compiler was one of the earl lest proposals

for a programming system that generated code from abstract specifications.

This program's task was to generate IPL-V code for subroutines that were

components of some larger program. It was implicitly assumed that the

original specifications had been decomposed Into detailed functional

descriptions for a collection of routines that would make up the complete

program.

The definitions of routines to be generated by the Heuristic Compiler

could take one of two forms, with each form being handled by a separate

special compiler. The first form involved a before and after description of

the states of certain cells In the IPL system. The specification described the

Inputs and outputs of a routine. The state description compiler's task was to

derive the sequence of IPL instructions that brought about that

transformation. The other form of deflnillons was In terms of Imperative
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statements describing the function to be performed by a given subroutine,

which was handled by the function compiler. Both specialized compilers used

suitably generalized forms of means-ends analysis to generate sequences of IPL

instructions that would meet the Input specifications.

One branch of current research on automatic programming can be viewed as

attempts to generalize the ideas that were originally contained In the state

description compiler. Blermann (1976) describes several automatic programming

systems that derive programs from examples of input-output behavior for a

routine or from formal descriptions of Inputs and outputs. Note that the data-

structure oriented software design methodologies discussed above resemble

these systems in their focus on deriving detailed actions from inputs and

outputs.

Other automatic programming systems have been developed that generate

routines from Information supplied through a natural language dialogue with

the user (Heldorn, 1976). These efforts can be viewed as generalizations of

the function compiler. Such systems consist of four components (Green, 1977;

Heldorn, 1976; Balzer, 1973). First, the system acquires a description of the

problem to be solved, frequently via Interactions with a relatively naive

user. Second, this Information is synthesized into a coherent description of

the program to be written (Green, 1977). This description is then verified,

and additional Information, if necessary, Is acquired through further

interactions with the user (Balzer, Goldman, and Wile, 1977). Finally, the

refined description is used as input to a subsystem that synthesizes the
Is

program In the high level language, making decisions about data structures,
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algorithms, and control structures. Much of the current work in automatic

programming focuses on the last of these components.

Balzer and his colleagues have consiaered the task of transforming an

informal natural language specification of a program into a formal description

of a design. This design would then be Input into a code generation

subsystem. There are two aspects of Balzer's work that are relevant here.

First, he attempts to develop techniques that enable one to carry out the

Initial phases of the design effort. Incomplete goal-oriented specifications

are first translated Into abstract, incomplete functional specifications and

then refined into a complete set of formal specifications for the program.

Second, the knowledge used by Balzer's system is domain Independent. This

system can be contrasted with the programs of Long (1977) and Mark (1976)

which are strongly domain dependent, and where design problems are proposed in

a single micro-world.

A system that Is designed to deal with the problems of detailed design

and code generation Is a program called PECOS (Barstow, 1977, 1979). PECOS

generates LISP code from a high level description of input and output data

structures and the algorithms to be used to solve the problem. A

distinguishing feature of PECOS is that the program uses a collection of

rules. It encodes both general knowledge and specific Information about LISP

to guide its problem solving efforts, rather than using a uniform strategy

like means-ends analysis.

PECOS' knowledge base is In the form of a large set of rules. General

rules deal with representation techniques for collections, enumeration

'1 7"1



techniques for collections, and representation techniques for mapping. Each

of these subsets of rules can be organized into a hierarchical structure with

a number of Intermediate levels between the most abstract concepts (e.g.

collection) and Information about specific procedures or data structures (e.g.

linked free cells).

PECOS employs problem solving mechanisms that Iteratively refine each

component of the specifications. A partially refined subproblem is selected,

and then a rule is applied to it. Each rule applicatlon can produce one of

three outcomes. First, the subproblem can be refined to the next lower level

of detail. Second, crucial properties of some component of the subproblem can

be identified and included in the description. Third, additional Information

about the subproblem can be gathered.

This review of automatic programming demonstrates that there are two

components to the task of software design. The first Is the translation of the

Initial goal-oriented specifications into a high-level functional

decomposition of the original problem. This incomplete, abstract description

of the problem must then be refined into a set of formal specifications that

precisely define data structures, control structures, and the functicns

performed by various modules In the program. The second stage of the design

V process Involves a collection of implementation decisions. These decisions

specify data structures and algorithms that satisfy the functional

descriptions and efficiency criteria. The first phase requires powerful

problem solving strategies that can factor the original problem Into a

collection of subproblems. It also requires the generation of successive
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refinements of each subproblem, Incorporating more and more detail about the

developing solution.

Models of Planning and Design

There exist two problem solving systems (Sacerdoti, 1975; Hayes-Roth and

Hayes-Roth, 1979) which contain mechanisms that seem adequate to carry out the

processes required In the Initial phase of the design process. Both of these

systems generate a plan of action.

Sacerdoti's (1975) NOAH solves robot planning problems by a process of

successive refinement. Sacerdoti assumes that the knowledge necessary to

generate a plan Is organized in a collection of knowledge structures, each of

which contains the specification of some subgoal and the actions necessary to

accomplish that subgoal. Each unit of knowledge has the Information necessary

to take one element of a developing plan and produce its next more detailed

refinement. Sacerdoti assumes that the complete plan Is generated

Iteratively. At any stage of the planning process, each segment of the plan

Is expanded to Its next level of refinement. Then general ized problem solving

processes called critics are used to reorganize this more detailed plan Into

an Internally consistent and efficient sequence of actions. The process

repeats Itself at the next level, terminating with a plan whose individual

steps can be executed to solve the Initial problem.

Hayes-Roth and Hayes-Roth (1979) describe a HEARSAY-like system which

,, plans routes for performing a collection of everyday errands. Knowledge about

the planning of errands Is organized Into a collection of pattern-directed

modules, called special ists, that communicate through a global data structure

9
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called the blackboard. The behavior of this system is opportunistic in the

sense that data currently on the blackboard can trigger a specialist that

makes a decision at some arbitrary level of abstraction In the developing

plan.

Hayes-Roth and Hayes-Roth point out that a system like NOAH is quite

rigid, in that it is restricted to a purely top-down, breadth-first expansion

of a solution. Their system, in contrast, is capable of making a best or most

useful decision at any level of abstraction; Is capable of incremental or

partial planning; and can adopt different planning methods depending upon the

specifics of a given problem.

Many of Hayes-Roth and Hayes-Roth's criticisms concerning the rigidity of

a program like NOAH are well taken. On the other hand, many of the phenomena

that they have observed in their protocols may be due to the task and the

level of expertise of their subjects. None of their subjects had extensive

experience with errand planning tasks. It may be the case that one would

observe quite different behavior in an environment that required the solution

of a large number of subproblems and the Integration of these solutions. One

might also expect more orderly kinds of behavior In situations where

successful performance required the Integration and utilization of a large,

well-organized body of relevant knowledge.

There has been a limited amount of research on the process of design or

on problems that are difficult enough to require the construction of an

elaborate plan. Much of the work on expert problem solving In thermodynamics

(Bhaskar and Simon, 1977), physics (Larkin, 1977), and other semantically rich
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domains is not directly relevant to processes involved in solving design

problems, since these studies all use problems that can be solved by a single,

well understood problem method, or schema. An expert in these domains first

has to identify the relevant schema and then apply the schema to the problem.

In contrast, the major task in design is the reduction of the original problem

Into a collection of subproblems.

Levin (1976) has attempted to develop a theory of software design

processes that is consistent with current thinking on the structure of the

human information processing system and known problem solving methods. Levin

postulates that design can be viewed as Involving three fundamental processes-

-"selecting problems to work on, gathering Information needed for the

solution, and generating solutions",( Levin, 1976, p. 2). Levin argues that

the problem selection process Is controlled by a set of global strategies and

local Information about constraints that are directly relevant to the current

subproblem. He developed a simulation model that takes as Input the protocol

of an expert designer working on a fairly difficult problem and produces a

list of subgoals generated by that designer during the process of solving the

proh em.

Simon (1973) sketches out a theory of psychological processes Involved a

design task in the context of dIscuss!ng the distinction between well

structured and ill structured problems.

The whole [architectural] design then, begins to

acquire structure by being decomposed into various
problems of component design, and by evoking, as the
design progresses, all kinds of requirements to be applied
in testing the design of its components. During any given

" short period of time, the architect will find himself

11 - - -
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working on a problem which, perhaps being In an III
structured state, soon converts itself through evocation
from memory Into a well structured problem (Simon, 1973,
p. 190).

Simon's view of the design process Is that the original design problem is

decomposed into a collection of well structured subproblems under the control

of some type of executive process that carries out the necessary coordination

functions. Also note that information retrieved from long term memory is

incorporated Into the developing solution; it is this additional information

that converts the original ill structured problem into a collection of well

structured problems.

Much of the work discussed above focuses on the decomposition of complex

tasks Into more manageable subtasks. Our Interpretation of the literature on

software design is that this decompositlonal process is central to the task.

Moreover, we believe that the mastery of decomposition should be what

differentiates experts from novices. The 1heory to be presented next is built

on the process of decomposition and Its associated control strategies.

A THEORY OF PROBLEM SOLVING IN SOFTWARE DESIGN

The following Is an outline of a theory of processes Involved In solving

a software design problem. The successful performance of this task involves

the coordination of a complex set of processes. Some apply abstract knowledge

about the task. Others retrieve computer science knowledge or information

about the design problem or are involved In the storage of relevant

information for later use in solving problems. The focus of this discussion

12



will be on the global structure of the design task, particularly its guiding

control processes, and on the manipulation of knowledge within the problem

solving effort.

Experts have knowledge concerning the overall structure of a good design

and of the process of generating one. Using this knowledge, they direct their

actions to insure that their designs will satisfy these structural

constraints. This Implies that skilled designers have knowledge describing

the structure of a design independent of its content. This abstract knowledge

about design and design processes, along with the set of procedures which

implement these processes, will be referred to as the "design schema." This

schema, which develops through experience with software design, enables

efficient management of a designer's resources in doing this particular

special ized and complex task. We propose that the generation of a design Is

controlled by the Interaction between the design schema and the more specific

*knowledge that describes how to accomplish particuiar goals.

A schema is a higher order knowledge structure which governs behavior in

a particular domain or activity, providing a broad abstract structure onto

which an exemplar Is to be mapped. These knowledge structures specify

principal elements of a given domain and include mechanisms which drive the

generation process and which lead to outcomes which are structured according

to conventions shared by expert members In a discipline. A schema can be used

to organize complex material Into constituents and may be applied recursively

to break some of these constituents down further. These same structures also

guide the comprehension process by arranging Incoming information so that it

13



is structured according to the underlying abstract schema. Absence of an

appropriate schema can interfere with both the Initial comprehension and

subsequent recall of a text.

The design schema Is used In both the generation and comprehension of

software designs. The design schema is not tied to any specific problem

domain, but consists instead of abstract knowledge about the structure of a

completed design and the processes involved in the generation of that design.

It accounts for the overall structure of expert design behavior and the

similarities among experts. Of course, the design schema will differ from

expert to expert, since their experiences with software design will not be

identical. However, the overall nature of these schemata will be similar for

most people. Therefore, we choose to simplify this discussion by referring to

a single, modal design schema.

The design schema develops as a result of experience with software

design. Originally, a designer's approach to this task is assumed to Involve

general problem solving strategies, such as "divide and conquer." As an

Individual has more and more experience with this activity, these general

strategies are transformed Into a special ized schema. The schema is developed

through the addition of domain-specific concepts, tactics, and evaluative

4criteria. Whenever a designer's specialized schema Is inadequate to solve a

problem, more general strategies take over.

The design schema is assumed to Include: 1) a collection of components

which partition the given problem into a set of meaningful tasks, 2)

components which add elements to tasks which assure that they will function

14



properly (e.g., initialization of data structures or of loops), 3) a set of

processes that control the generation and/or comprehension of designs, and 4)

evaluation and generation procedures which ensure effective utilization of

knowledge. Each component of the design schema is composed of both declarative

and procedural knowledge about the abstract nature of the design process. The

schema can be applied recursively, which leads to a modular decomposition of

the problem into more and more detailed modules.

The schema can be viewed as driving the generation of a software design

by breaking up the initial task into a set of subproblems. Knowledge of the

particular subproblems that are identified during this decomposition interacts

heavily with the schema. However, the design schema itself does not contain

knowledge about any particular class of problems. The schema can be applled to

the original problem or to any subproblem at a lower level. The recursive

application of the design schema to subproblems enables decomposition of each

problem Into a manageable set of tasks.

How the decomposition proceeds depends upon the designer, the designer's

experience and the problem at hand. There are several decomposition

strategies that a designer can use to guide the process. One strategy Is to

break the problem into input, process, and output elements. While there are

other strategies that could be used to decompose some problems, the input-

process-output strategy is preeminently used. In order to keep this

discussion more concrete, we will describe decomposition In terms of this

prevailing strategy.

The Initial pass at decomposition results In a representation of the

15
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problem that Is a simplified "solution model" of the system. That is, a model

is devised specifying a set of tasks that will solve the problem and a control

structure for these tasks. It is then expanded Into e Eet of well-defined

subproblems. The solutions to these subproblems represent a solution to the

original design problem. This process of decomposition is now applled to each

subproblem In turn, resulting In more and more detailed plans of what should

be done to accomplish the task. Once an Individual selects a given element to

refine further, the schema is assumed to execute to completion, developing a

solution model for that element and refining it into a more detailed plan. if

any of the elements resulting from this process are complex ( i.e., accomplish

multiple functions that are not recognized as having known solutions), the

schema Is called recursively to reduce them to the next level of detail.

The application of the schema to an element of a design causes a set of

high level goals and procedures for accomplishing those goals to be activated.

Thus, the schema Includes procedures which examine Information relevant to the

expansion of a given element, critique potential solutions, generate

alternative solutions for a subproblem, etc. The input component, for

example, finds Information that must be passed to a process component before

the actual processing can be Initiated. If the chosen input data structure Is

complex, that Is, requires some degree of processing itself to generate the

appropriate data structure, then a new subproblem is generated as a descendant

of the original one.

The design schema represents the global organization of a designer's

professional knowledge. As such, it will Impact almost every facet of the

16



designer's behavior in the domain. Nevertheless, the design schema does not

encompass a person's knowledge of specific facts in computer science or

understanding of how things function in the real world. There are undoubtedly

other aspects of this domain which should not be subsumed under the schema,

but our theory is not sufficiently developed to isolate them at this point.

The decomposition process uses two additional problem solving strategies.

The first can be described as problem solving by analogy, or, to use Sussman's

(1977) term, "the debugging of almost right plans". When the solution model

generated for a given subproblem, or some part of it, is recognized as being

analogous to an already understood algorithm, that algorithm is evaluated for

applicability in the current context. If It is found to be reasonably

applicable, it Is debugged and Incorporated into the developing solution.

This attempt to retrieve previous solutions is Invoked once a solution model

has been derived, but before any further refinement takes place.

The second method can be characterized as problem solving by

understanding. This is prominent In cases where an element identified by

application of the design schema Is not understood in enough detail for the

design schema to be applied to it. The designer's knowledge of the problem

area In question, as well as of computer science, is then used to refine the

understanding of this element. This method may be employed at any point in the

solution. It Is most frequently applied when developing a solution model, but

can also be applied during refinement of a subproblem.

In addition to controlling the overall problem solving process, the
,

design schema has some coordination and storage functions. Successful solution

17



of a design problem requires that Information generated during each problem

solving episode be stored in long-term memory. This information must be

Interconnected with the expert's knowledge about computer science as well as

with the developing solution. Much of what goes on can be described as the

development of an understanding of the problem. The Information generated

during these understanding phases must be stored such that it can be retrieved

later for the solution of other subproblems. The design schema ensures that

successive episodes are organized so information generated can be stored in a

coherent representation of the developing solution.

The utilization of memory is Influenced by Its organization and by the

effectiveness of the abstract cues provided by the schema. Experience enables

concepts to be linked on the basis of the utility of considering the concepts

together. This usefulness can be defined in terms of concepts which

frequently occur in the same context (e.g., linked lists and efficient

Insertion and deletion of Items at random places within the list) or which are

alternative solution techniques -to similar problems (e.g., e symbol table may

be represented as a hash table or as a static tree table).

When a computer science concept Is learned, that concept Is associated

with the context In which It is learned. For example, one might first learn

about a particular data structure In the context of a certain problem. Later,

in another problem which would be appropriate for this type of data structure,

one might fall to apply this new concept, since the current context might not

encourage its retrieval. Eventually, through experience with the concept in

many other contexts, It becomes IlInked to more abstract conditions for Its

18



use. Further, as a person's design schema develops such that It can manage

the complexity of alternate solutions, this concept would become connected to

the concepts of other data structures which would be considered In similar

contexts. Thus memory organization Is altered, reflecting the designer's

developing schema and previous experiences.

The major control processes of the design schema are summarized as a set

of very abstract production rules in Figure 1. Each rule encapsulates a

complex subprocess that an expert may use while generating a software design.

The rules are an attempt to capture the global control processes only; many

aspects of the design schema are not addressed at all. In particular, no

reference Is made to the processes that generate alternative solutions or

critique designs, or to the memory coordination functions that the schema

performs. Moreover, the rules only refer to the generation of a design; they

do not encompass its comprehension.

.......................................

Insert Figure I about here

..........................................

The goal of software design Is to break down a problem Into a set of

subprocesses which accomplish the task. After the Initial decomposition,

there may be multiple subproblems to be solved. The designer must have a way

of selecting a problem to work on from the currently unsolved subproblems.

The selection rule (Rule 1) provides a coherent way of determining what
9)

problem to tackle next. The rules assume that the list of unsolved
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subproblems are stored on an agenda. The selection rule results in one of them

being marked as a current subproblem. The other rules are applied to this

problem.

The usual order in which a designer attempts subproblem solution is top-

down, breadth-first. The design schema causes each element of the current

Iteration to be expanded to the next level of detail. This expansion continues

until a new representation of the complete solution is developed at the next

level of detail. Solving the problem top-down, breadth-first ensures that all

of the information about the current state of the design at one level of

abstraction will be available to the next iteration.

One reason for this strategy is that the elements of a developing design

can Interact with each other. Although one of the heuristics that guldes the

decomposition process is the attempt to define subproblems that do not

interact or interact only weakly, this Is not always possible. Further

refinement of one element may require knowledge of decisions that will be made

In developing a not-yet-considered element.

A designer may choose to deviate from this order. These deviations are

dictated by individual differences In design style, in the amount of knowledge

that the designer may have concerning the problem, or in differences in the

solution model. The solution model with its various constituents may enable a

designer to recognize that a solution relevant to the current problem is

known. This solution then can be adapted to the current situation. Also, the

representation of each element of the solution model may enable a designer to

estimate their relative difficulties or to Identify potential Interactions

r2
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which impact further development of the design. The real ization that one or

more constituents have known solutions, are critical for success, present

special difficulties, etc., can cause the designer to deviate from a top-down,

breadth-first expansion of the overall design by assigning a higher priority

to a particular constituent.

Once a subproblem has been selected, the designer attempts to derive a

solution model for it (Rule 2). Recall that the solution model is an abstract

simplified description of elements of the subproblem's solution. This

solution model Is the basis for all succeeding work on this problem. Rules 2

through 5 describe the processes that may result in the generation of the

solution model for the current subproblem. If the current subproblem is

perceived to be complex, the designer must first undertake to reformulate it

before a solution model can be generated. Rule 3 represents the process by

which Information relevant to the subproblem Is considered, and a new more

understandable problem Is produced. Once It is precisely formulated, a

solution model Is generated if the problem requires further decomposition

(Rule 5). If the problem, once understood, is sufficiently simple, It Is

marked as solved and is not further considered (Rule 4).

The next set of rules (Rules 6 through 10) encompass the processes by

which a designer attempts to retrieve from memory a previously constructed

solution to all or part of the current subproblem. First, the solution mode!

for this problem is used as a retrieval cue to access potential solutions In

memory (Rule 6). These solutions are then evaluated for their usefulness in

the current context (Rule 7). The rules give a simplified characterization of
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the results of this evaluation process. The solution is either accepted as Is

(Rule 8), modified to fit the current situation (Rule 9), or rejected (Rule

10).

If no usable solution to the current subproblem is found, the solution

model is refined into a collection of well-defined subproblems (Rule 11).

This refinement process takes Into account data flow; functional analysis;

aesthetic, practical, and other criteria; and implementation considerations.

Each new subproblem thus generated Is added to the agenda. The set of rules

Is applied to the subproblems on the agenda until all problems are considered

to be solved.

The theory just presented describes a mechanism by which experts are able

to Integrate and structure their high level knowledge of software design.

While experts in the field should manifest mature design schemata, we would

not expe-ict beginning designers to show evidence In their behavior of this

complex organization. Therefore, many differences we might observe between

experts and novices can be attributed to differences in the state of

development of their design schemata.

!7A COMARISON OF EXPERT AND NOVICE DESIGN PROCESSES

The processes involved In designing software are learned through

experience. To examine their development, we collected thinking aloud

protocols from people at various skill levels. This set of protocols forms a

rich data base of evidence about the problem solving processes used In

software design. There are, of course, many similarities In the way experts
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and novices approach this process; subjects at different levels used many of

the same global processes. Differences as a function of expertise fall into

two major categories: the processes used to decompose the problem and solve

Individual subproblems, and the representation and util ization of relevant

knowledge. In this section, the similarities and differences among subjects

will be discussed and related to the theoretical Ideas proposed above.

Subjects and Materials

Four of the subjects were experienced designers. They include a

professor of electrical engineering (S35), two graduate studen-s In computer

science (S2 and S5), both of whom had worked as programmers aiid designers for

several years, and a professional systems analyst with over ten years

experience (S3).

The five novices were undergraduate students recruited from an assembly

language programming class. They had all taken from four to eight computer

science courses; most had had part-time programming jobs. While these

subjects are moderately experienced programmers, they have little experlen e

with software design per se. We selected two subjects from this group (S17

and S19) and examined their thinking aloud protocols In detail. Both these

subjects had taken a course that specifically taught software design.

We also collected a protocol from a subject with no software design

experience (S25, whom we will call a pre-novice). This subject has taken

several programming courses and has written programs In the course of the

research in which she Is Involved. Her experience differs from the novices In

% two ways: her formal training has dealt solely with the practical aspects of
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programming, and therefore she has IIttle knowledge of the theoretical

constructs of computer science; and, all of her programming experience has

been statistical programming In FORTRAN.

Insert Figure 2 about here

The particular problem given to the subjects Is to design a page-keyed

indexing system. The problem specifications are shown In Figure 2. This

problem was chosen because It is of moderate difficulty and understandable to

Individuals with a wide range of knowledge of software design, while not

requiring knowledge of highly specialized techniques that would be outside the

competence of some expert subjects. That Is, a reasonable design could be

constructed for this task using only the techniques taught in upper-division

undergraduate courses in computer science or those contained in standard

textbooks on computer science algorithms. A variety of approaches, however,

could be taken to design such a system.

The protocols of a subset of the subjects were analyzed in detail, while

others were examined more cursorily to find corroborating evidence. The

method by which this analysis was carried out and the results obtained can be

3] found In Atwood and Jeffries (1980). The discussion below is based primarily

i on the detailed analysis, but examples have been chosen freely from all the

protocols.
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Similarities Across Expertise Levels

On a first reading of these protocols, one Is struck by the variations in

the design solutions as much within expertise levels as across them. Both the

design style of the individual subject and the set of subproblems he or she

chose to attack make each solution very different from any of the others.

More careful consideration, however, brings up many similarities, both within

experience groups and across all the subjects.

Almost all the subjects approached the problem with the same global

control strategy: decompose the problem Into subproblems. They began with an

Initial sketchy parse of the problem, which we have called the solution model.

Some subjects were quite explicit about their solution models, while for

others it was necessary to Infer the underlying model. Whenever a subject

made a quick, smooth transition from one element of the solution to the next,

without any overt consideration of alternatives, and without reference to

external memory, we assumed that the solution model underlay this decision.

The solution models for the Indexer problem are surprisingly similar for

both experts and novices. In general, subjects decided to read In the terms,

build some sort of data structure to contain them, compare the terms to the

text, associate the page numbers with each term, and output the terms and page

numbers. We do not assume that this would be true for all software design

problems. The indexer problem was chosen to be "straightforward"; for such a

problem, expertise Is needed not for the Initial solution model, but for the

expansion of this model Into a well-defined set of subproblems and the further

refinement of those subproblems. Our results are therefore potentially limited

to similar straightforward problems. In tasks for which the determination of
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a solution model Is itself a difficult task, quite different problem solving

methods may be used. Once the Initial solution model was derived, the subjects

attempted to expand this Iteratively. No subject went directly frm the

solution model to a complete solution. They broke the problem into

subproblems, and refined the solution through several levels.

As a group, the novices explored a set of subproblems similar to those

examined by the experts. The Initial decomposition led to equivalent

constituents, and In further iterations the novices as a group developed

subproblems that were still comparable to the experts. The experts tended to

examine more subproblems and frequently found different solutions. Even for

idiosyncratic aspects of the problem, however (e.g., how to treat hyphenated

words, terms that cross page boundaries), the novices were as likely as the

experts to Incorporate a particular element Into the solution.

While the novices applied the same general problem solving methods as did

the experts, their solutions were neither as correct nor as complete.

Furthermore, the novices were not able to apply the more efficient problem

solving processes that the experts used. The novices were lacking In skills

In two areas: processes for solving subproblems, and ways of representing

knowledge effectively.

Subproblem Solution Processes

Decomposition. When these subjects, both experts and novices, perceived

a particular problem to be complex, they decomposed it into a collection of

more manageable subproblems. The experts, of course, were more effective than
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the novices at doing this. They showed some stylistic differences In when and

how they used the decomposition process, but its use Is pervasive In all four

expert protocols.

S21s protocol Is an almost perfect example of solution by repeated

decomposition. He Is a proponent of design by stepwise refinement; in this

protocol he rigidly adheres to such a strategy. His initial decomposition Is a

listing of the major steps to be accomplished, little more than a precise

reformulation of his solution model. On the next iteration he adds a control

structure to this collection of modules. Successive passes decompose these

modules into sets of submodules until he is satisfied that he has reached the

level of primitive operations.

S3 also iteratively decomposes the problem In a top-down, breadth-first,

beginning to end manner. Her style, and the design she eventually produces,

Is similar to that of S2, except that her protocol Is interspersed with

digressions that relate to subproblems at other levels and at other positions

In the problem. S3 also attempts fewer iterations than S2, bringing the

problem to a slightly higher level of detall in two passes as S2 did in five

or six. In fact, at the end of the protocol, she real izes that the second

iteration is so much more detailed than the first that it taxes her ability to

comprehend the solution. She then Incorporates a sketchy third iteration at a

"higher" level than the previous one.

After articulating his problem model, S5 notes that In order to know how

to read the term file into a data structure, he needs to know more about how

the matcher works. He then proceeds to work out the design of the matcher and
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its associated data structures. This places him directly in the middle of the

decaposition tree, working simultaneously on two distinct branches. After

ascertaining how the match process would operate, he proceeds to flesh out the

design, proceeding from here in a top-down, breadth-first, beginning to end

manner.

The core of S35's solution is an algorithm he retrieves that defines the

term data structure and the matcher. Uslno this as a base, he builds the

design in a top-down, breadth-first manner, although he does not expand It

beginning to end. The reason for this is that he defines the problem in terms

of data structures derived from his original functional analysis of the

problem decomposition. Occasional deviations from this breadth-first order

occur when he attempts to define low level primitive actions which are the

building blocks of his design.

All of these experts demonstrate the existence of a polished design

schema and a sophisticated ability to use the decomposition method to expand

their designs. Differences across experts were In part dictated by disparate

design styles, but to a great extent were due to differences In their

knowledge of and ability to retrieve a relevant solution plan.

The novices, on the other hand, were much less effective in their use of

the Iterative decomposition method. They seem to lack the more subtle aspects

of the design schema. A well-developed schema should guide the designer toward

the production of a "good" design, as opposed to one that accomplishes the

,, task "by hook or by crook." This means that considerations of efficiency,

I', aesthetics, etc., should Influence the manner in which design elements are
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expanded. There is no evidence of this in the novices. Furthermore, the schema

should include procedures that enable designers to make resource decisions

about the order in which to expand the modules, e.g., most difficult first, or

a module that uses a data structure might be designed before the one that

produces It. In the novices that we have examined In detail, we see no

deviations from the default breadth-first, beginning to end consideration of

modules.

The best of the novices was S19. He Is the only novice that iterates the

problem through more than two levels of decomposition. However, beyond the

first level, he Is unable to recursively apply some of the same decomposition

strategies he used earlier. S19 gets particularly bogged down in his

"compare" routine, rewriting It several times without complete success. On

each attempt he simply tries to generate a solution through brute force by

writing down the necessary steps. There is no hint of having generated a

model for this process nor of any attempt to further decompose It.

S17 was able to decompose the Indexer problem and to generate an adequate

initial pass at a solution. He then attempted io expand his solution (mostly

at the urging of the experimenter). However, he makes no attempt to further

decompose his chosen modules. Each subsequent iteration simply repeats the

previous solution, adding on new "facts" as he discovers them. For example,

at one point he considers the possibility that a term straddles pages. He

changes his design to accommodate this, but he does so by augmenting existing

(. elements, not by decomposing them Into submodules. This sort of behavior

Indicates that S17 Is unable to recursively apply the design schema.
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Another of the novices writes down a solution In terms of steps, instead

of modules. The distinction between steps and modules Is necessarily a fuzzy

one. However, a set of steps differs from a modular decomposition In that

steps have no hierarchical strucrtre, steps ot very different levels of detail

may occur together, and steps have only a prii:!tive control structure. In the

second iteration of his design, this novice merely produ,es a similar set of

steps, more specifically tied to the architecture of n particular computer.

He appears to understand that a problem should be broken down, but has not

developed a design approach which decomposes into subproblems.

Although the novices have not Incorporated the more subtle aspects of the

design schema into their behavior, they can apply the basic principles. The

pre-novice, S25, however, has not developed even a rudimentary design schema.

First, S25's protocol is qualitatively differeyt from those of the computer

science majors. They produced designs which, 0,lle differing In many details

from those of the experts, were at least :.arginally acceptable solutions to

the problem. S25 did not produce a desl(n. She generated a mixture of FORTRAN

code and comments that together could be taken as a partial solution to the

task of writing a program to solve the Indexer problem. Moreover, she got

quite bogged down In the selection of data structures for the text and terms

and In the Implementation of procedures to compare Items in these structures.

Because of these difficulties, she eventually abandoned the task without

generating a complete solution.

S25 made no attempt to decompose the problem; she did not seem to be

using any kind of an overall mode! to guide her solution. She let the problem
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description and the portion of the "program" already written direct her

expansion of a solution. Information did not seem to accumulate over the

solution attempt; she attacked the same subproblem repeatedly, but often made

no progress beyond the initial attempt. She did seem to understand that Input,

process, and output components were needed, but this was not sufficient to

produce a correct initial decomposition of the problem.

We take this continuum of more effective use of the decomposition method

with Increasing experience as strong evidence for both the reality and the

usefulness of the design schema. Another aspecl of expertise that Is apparent

In these protocols Is the ability of the experts to generate and evaluate

alternative solutions to a subproblem.

Evaluation of Alternatives. When the experts are trying to determine

whether a particular plan is actually a good sc lution to a subproblem, they

state alternative solutions and select ariong them. S3, for example,

explicitly mentions that the page numbers coulc be stored in an array or a

linked list. She does some calculations of the relative storage requirements

of each and chooses the linked list becatuse It is more efficient. S35 spends

some time considering two ways of implementing his term data structure; one is

time efficient, and the other is storage efficient. He concludes that,

without knowledge of the actual computer system to be used, he does not have

enough Information to decide which is better. He chooses to leave both as

I alternatives.

The novices seldom consider more than one possible solution to any

subproblem. From the marginal utility of some of the solutions they do
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retrieve, It seems that they are hard pre.sed to find even one solution to

many subproblems. For example, at one point, S19 says 'This might be the only

way I can think of to be able to do this. It's going to be awful expensive,"

and elsewhere, "It's Inefficient and expensive, but it's easy." He seems to

have some ability to critique his solutions, but Is at a loss to correct the

deficiencies he finds.

In the few cases in which the novices choc-se among alternatives, they

make simple dichotomous decisions (do X or not X). Their decision Is

invariably made on the basis of programming convenience. For example, S19

notices that a term could straddle a page. He spends some time deciding

whether or not to permit this, and decides that it is easier not to allow it,

although this solution Is unlikely to be realistic in terms of Indexing a

textbook.

Retrieval of Known Solutions. One of the features of the decomposition

technique Is that it enables the designer to convert a problem Into a set of

simpler subproblems, eventually reaching the point where all the subproblems

have known solutions. While the novices attempt to employ decomposition, we

see no evidence that they do so in order to arrive at a set of known

solutions. The experts, in contrast, seem to have a large repertory of

solutions and of methods for decomposing a-problem. The clearest examples of

this are when some of the expert subjects were able to recall and apply a

single solution to the major problem tasks. S35 and S5 both attempted this.

S35, after reading the specifications, Immediately states "well, the

obvious answer to this is to use the technique of Aho and Corasick, which
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appeared in CA04 " (Aho and Corasick, 1975). This article describes an

algorithm for searching text for embedded strings. He says, "basically what

you do Is you read the term file, and you create a finite state machine from

it. And then you apply this finite state machine to the text." S35 then spends

the next two hours expanding this solution into a complete design,

incorporating the Idiosyncrasies of this problem (e.g., that the page number

is not known until the end of the page) Into this general algorithm. It Is

apparent that his understanding of the algorithm strongly influences the

expanding design and many of the design decisions.

After his Initial parsing of the problem, S5 notes that the match process

Is critical for an efficient and successful solution. This reminds him of a

published algorithm that may be applicable to this situation. "Now my

immediate inclination is to, about three CACMs ago, this particular problem

was discussed." The algorithm (Boyer and Moore, 1977) he refers to Is similar

to the one recal led by S35.

S5's memory of this algorithm is somewhat sketchy, though, and he is

unsure of how It Interacts with the rest of the design. He works through the

match process and Its associated data structure In some detail. The resulting

algorithm Is similar to, but not Identical with, the published algorithm, In

a very real sense, he constructs an original solution that Incorporates many

of the features that he recalls from the Boyer and Moore algorithm. From

there, he proceeds Iteratively through refinements of the design as a whole.

*: Our other two experts, S2 and S3, did nol retrieve a single solution to

the major tasks, but they frequently solved subproblems by incorporating plans
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that they had used before. For example, S2 uses a linked list to store the

page numbers. He notes that the Insertion procedure Is somewhat tricky to

implement; he would prefer to refer to one of his earl ier programs, rather

than spend the time to work out the details again. S3, when considering the

problem that hyphens can serve two distinct functions In the text (as part of

a word or to divide a word at a line boundary), mentions that she knows of a

similar case that was solved by requiring that distinct characters be used In

each case.

The experts not only retrieve solution plans to all or part of the

problem, but they are able to modify those solutions to fit the current

situation. S35's design was a modification of a well understood plan. S5

only retrieved the skeleton of a plan; he spent most of his time augmenting

and altering this plan to fit the actual problem.

The novices show no evidence that they are trying to adapt previously

learned solutions to any part of this problem. No novice ever made a

statement like "this is just like X" or "I did something similar when Y." They

do retrieve solutions, but only at the lowest levels. For example, S17

decided that he would flag the first empty position for each term In his page

number array. This Is a solution to the problem of locating the current end of

the page number list, but it is far from the best one. S17 makes no attempt

to alter this solution so that it accomplishes this in a more efficient

manner. It Is not clear whether this is due to his Inability to realize the

inefficiencies In this solution, or whether he simply does not know what

modifications to make.
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Knowledge Representation

Access to Background Knowledge. The experts demonstrated an Impressive

ability to retrieve and apply relevant Information in the course of solving

this problem. The appropriate facts are utilized just when they are needed;

Important Items are seldom forgotten. Moreover, they devote little time to

the consideration of extraneous Information. In contrast, the novices, lack

of an adequate knowledge organization for solving this problem is apparent

throughout their protocols. They frequently fall to correctly apply knowledge

that Is needed to solve the problem, and the information that they generate In

the ourse of solving the problem is often not availablo to them when It is

most needed. We attribute this, In part, to the Inadequacy of the organizing

functions provided by their Immature design schemata.

The novices' failure to apply relevant knowledge can be seen In their

selection of a data structure for the terms and page numbers. Each term can

potentially have a very large number of page references associated with it,

but the typical entry will have only a few rsferences. The selected data

structure should allow for the occasional term with an extreme number of

references without having to reserve large amounts of storage for every term.

A linked list is a data structure which allows these properties. Our experts

used a linked list to hold the page numbers associated with each term. The

course from which the novices were recruited had recently covered linked

lists. In addition, most, if not all, of them had been exposed to this

concept in other courses. Thus, we are confident that the subjects were

familiar with the construct. In spite of this, none used such a list to hold

the page numbers. They all stored page numbers In an Immense array. Several
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subjects mentioned that such an arrangement was inefficlent, but none were led

to change it.

The construction of a linked list is a technique with which these

subjects are familiar. However, their un erstbndlng of when that technique Is

applicable does not extend to the current situation. Understanding of the

conditlons under which sane piece of knowledge is applicable is one way in

which knowledge about a domain becomes integrated. For this information to be

useful, It cannot exist as a set of isolated facts, but must be related to

other knowledge. For example, linked lists would be interrelated with

Information such as additional types of data structures and methods of gaining

storage efficiency in a program. The experts have achieved this Integration

of concepts, while It is still undergoinS development in the novices.

Episodic Retrieval. The design scher a mediates retrieval of information

within a problem solving effort as well es retrieval of relevant background

knowledge. The experts, with their more mature design schemata, were better

able to accumulate useful information during the course of the solution

attempt and to apply it at the relevant lime. The clearest example of this is

S3's handling of the issue of hyphens In the problem.

Early In the protocol, S3 notices that the text may contain hyphens and

that this complicates the comparison process. At this point, S3 only notes

this "as being a problem when you come around to ccwparing." This issue is not

considered for long portions of the protocol, but it emerges whenever a module

ft that is related to the compare operation jr accessing the text Is considered.

S3 never mentions hyphens when she is expending the "read terms" module, but
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It Is one of the first things mentioned when the "construct Index" module is

taken up.

In contrast, the novices are not only less able to generate relevant

information, but the information that they do generate Is not stored in an

easily retrievable form. S19 provides an Illustration. Early in his solution,

he notes that a term may straddle a page. He decides that this possibility

complicates the design unnecessarily and legislates that It will not happen.

He even writes down this assumption. Sometime later he again notices that this

problem could occur. He treats this as an entlrely new discovery; no mention

Is made of his earlier treatment of the topic. In fact, during this second

episode, he decides to allow terms to straddle page boundaries, but uses the

ending page number Instead of the starting pane number as the reference. This

too is written down, but neither then nor later does he notice that It

contradicts his earlier assumption.

Another example is that S17 mistakenly assumes that terms will be single

words, rather than phrases. In the middle of the problem, while rereading the

specifications for some other purpose, he notices the error and comments on

corrections that must be made to allow for multi-word terms. However, none

are Incorporated Into his next Iteration of the problem, which only deals with

single word terms. At the end of the session, he notices once more that terms

are phrases and that his design must be modified to account for that fact.

This failure.to recall Information over the course of a single solution

attempt is probably the result of two handicaps under which the novices must

operate. First, the solution to these problems consumes such a large portion
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of their resources that they are unable to monitor memory for other

potentially relevant Information. Experis can avoid overloading themselves by

utilization of the design schwna. Second, their memory representation of the

problem is not organized in such a way as to facilitate the retrieval of

previously generated information.

Understanding of Concepts. The novices fail to have an adequate

understanding of many of the basic concepts of computer science. These

undergraduates are generally familiar with only one machine (the CDC6400) and

two or three programming languages. Much of their understanding of the basic

concepts is tied to their experience with one or two exemplars of that concept

and reflects the Idiosyncrasies of that experience. These mistaken assumptions

frequently lead to inefficient designs ani occasionally to outright errors.

Several examples of Incomplete or incorrect understanding of concepts can

be found In the protocols of S17 and S19. S17, in particular, repeatedly

attempts to Incorporate constructs into his design that he is aware of, but

does not fully understand. He tells the experimenter that the book text

should be stored as a "binary tree"; i.e., he Intends to read In the book text

and sort it into alphabetic order (presumably by word). A binary tree Is an

efficient structure for repeatedly searching ordered collections of Items. It

allows one to find an arbitrary item in the set with substantially less

searching than a sequential search requires, In much the same way that one

looks up an entry in a dictionary or a phone book. However, all the

information as to which word follows another, which are necessary to Isolate

phrases from the text, is lost. S17 has apparently learned some of the
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conditions under which a binary tree should be used, but he clearly does not

understand the concept well enough to reject it In this obviously unsuitable

situation.

Contrast this with the solution of S5. Ve Is quite concerned with

efficient storage of the terms and the tcxt. He spends over an hour working

out appropriate data structures and how ihey will be searched, as opposed to

the minute or two spent by S17. S51s solutiorn Is to store the text as a

string, and, for very much the reasons mentioned above, to store the terms in

a binary tree. These decisions are exactly opposite to those arrived at by

S17.

S19's protocol shows that he does not completely understand the

difference between computer words and English words. On the computer that he

is familiar with, a computer word will contain an English word of up to ten

characters, so for many practical purposes, the distinction Is not needed. In

his term data structure, he allocates five (computer) words for each term, one

for each (English) word. While this might not be the most efficient way to

store the terms, it might work for some ciata sets, at least on the CDC6400.

His misunderstanding of the difference gelis him into trouble, however, when he

tries to read the text. He Initially tries to read It a line at a time, but

abandons this because he cannot determine how many words are on a line. He

then decides to read the text a word at a time. His assumption that an English

wora !s a natural unit for Input (it Is not; it takes a substantial amount of

computation to determine the word's boundaries) Is due to his confusion

between the two types of words.
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S3, on the other hand, not only understands the difference between the

two concepts, but Is also aware that the overlapping terminology Is confusing.

When she Is allocating list pointers, Phe comnents "the pointers themselves

are actually in a vector of NT units, or word-, well, computer words, I guess,

... (that's certainly a misused word)." Thus, she Is sensitive to the

distinction between the concepts as well as the confusibility In terminology.

Yet another example Is S17's confusion over what a flag is and when to

use one. A flag is a variable that can take on two values, usually "true" and

"false". It is used to indicate the stal-us of some condition that changes

within the program. S17 has some unders+anding of the use of flags, as he

Intends to "set a flag back and forth" to signal the end of the text file.

While this is not an error, It Is not a particularly good use for a flag, as

the end of the text file will only be reached once, and a simple test for the

condition would be more suitable.

Later on In the design he needs a way to Indicate which terms have been

found on the current page before the page number Is available. While his

solution Incorporates the Idea of setting a flag, he calls It a "count". This

misuse of terminology confuses him later on, when he mistakes this "count" for

a count of the number of times each term occurs In the entire text.

Understanding of Implications. In addition to their conceptual failures,

the novices are often unable to extract all the Implications of a piece of

knowledge. In particular, they are frequently unable to derive the

implications of the Interactions between a task and a computer Implementation

ji, of that task. This is exemplified by the difference in the way the experts

and novices dealt with the subproblem which compares the text and terms.
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This subproblem is the heart of this desicn, since the efficiency of this

routine directly Impacts the overall efficiency of the program. All of the

experts treated the matcher as a difficult problem. They concerned themselves

with many aspects of it: whether comparing shoLId be done character by

character or word by word, how to organizo the data to minimize the number of

comparisons that are unsuccessful, what constitutes a correct match. The

novices, for the most part, simply stated the subproblem and made no further

effort to decompose It. They seemed to treat it as too simple to require

further consideration. The experience most of the novices have with compare

procedures is with those that deal with compar ing numbers. For such cases, the

procedure is quite straightforward. Que,;btions about how much to compare at

once and how to decide If a match has occurred never arise. The novices did

not retrieve Information 5bout factors that must be considered In a charactgr

string compare, because they simply did riot understand the implications of the

way a computer compares data.

The novice protocols indicate that novices have mastered the Jargon of

the field; their comments are peppered wilh technical computer science terms.

More careful examination, however, shows that these terms do not have the same

meaning for the novices as they do for the expert. This implies that in some

sense design decisions that are described by ihe same words are not the "same"

for people of different experience levels. In addition, as the above examples

show, these misunderstandings and failure,, to deduce relevant impl ications

frequently lead the novices astray. They confuse similar concepts or apply a

concept when It Is Inappropriate or do not take Into account pertinent
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considerations. In actual designs these !;ubtie errors could be disastrous, as

they probably would not be noticed until the program was written. If the

problem were serious enough that a major change to the design was required,

large amounts of effort would have been w'asteec.

DI SCUSSION

The decomposition process is central to the successful derivation of a

software design. It serves to break a problem down into manageable and

minimally Interacting components. Thus, the ti~sk Is reduced to one of solving

several simpler subproblems. For experts, the decomposition and subproblem

selection processes of the design schema dictate the global organization of

their design behavior. They first break the problem Into Its major

constituents, thus forming a solution moodl. During each Iteration,

subproblems from the previous cycle are further decomposed, most frequently

leading to a top-down, breadth-first expansion of the solution. The Iterative

process continues until a solution Is ideitified for each subproblem.

The data show a range of development In the utilization of the

decomposition process. At least four distinct levels can be distinguished.

The first level is exempl ifiled by the pr-novice, S25, who attempted to code

the major steps of the solution directly In FORTRAN. A novice designer at the

'I

next level derives a solution model and converts it Into a series of steps.

Novices who broke the problem Into steps were usually able to Iterate over the

steps at least once, producing a more delciled sequence of steps.

The more advanced novices are able to brec:k the problem Into meaningful
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subproblems, using their solution model as a basis. S17 Is able to carry out

this first level decomposition, but he is unable to recursively apply this

strategy. S19 Is able to recursively decompose the problem for the first few

levels, but eventually he becomes so mired in detk:1ls that the strategy breaks

down.

The experts manifest the fourth level of development of the decomposition

processes. They exhibit all three major components of the strategy: 1) They

break the problem nio manageable, minimally interacting parts, 2) they

understand a problem before breaking it Into subproblems, and 3) they retrieve

a known solution, if one exists. S2 and S3 depended almost completely on the

first two of these, while S5 and S35 were able to retrieve a known solution to

a significant portion of the problem.

Experts devote a great deal of effort to understanding a problem before

attempting to break It Into subproblems. They clarify constraints on the

problem, derive their Implications, explore potential Interactions, and relate

this Information to real-world knowledge about the task. The novices, on the

other hand, show little Inclination to explore aspects of a subproblem before

proposing a solution. This has serious consequences for both the correctness

and efficiency of their designs.

Expert designers employ a set of processes that attempt to find a known

solution to a given subproblem. Critical features of the solution model are

used to search for potentially applicable algorithms. Successful retrieval

requires the designer to have knowledge of relevant solutions and their

.It applicability conditions, to be able to retrieve the solution In a possibly

r 

4
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novel context, and to adapt the solution to the particular context of the

design problem. The experts show themselves to be skilled at retrieving

algorithms for use in their designs. Novices show no evidence of recognizing

the applicability of information in a novel situation that they had

unquestionably learned previously. The novices' schemata are deficient in the

processes that control the retrieval of Information for integration Into their

designs.

The experts differed in their ability to recall high-level solutions to

the problem, specifically, for the matcher and its associated data structures.

S35 retrieved an algorithm from the literature and built his solution around

It. S5 retrieved a skeletal solution to the same subproblems. However, he

chose to work out this solution in sane detail before proceeding with the

remainder of the design. S2 and S3 did not retrieve information about

possible solutions to these subproblems. Instead, they used the default

decamposition processes to iteratively refine the problem. Both, however,

recalled numerous low-level algorithms that they incorporated into their

designs.

The objective of the decomposition process is to factor a problem into

weakly interacting subproblems. However, subproblems can Interact, and the

individual solutions must be Integrated. This can impose serious coordination:jt

demands upon the preblem solver (Simon, 1973). The experts used two

components of the design schema to solve this coordination dilemma. First,

experts expand subproblems systmatically, typically top-down, breadth-first.

Second, they are able to store detailed and well-integrated representations of
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previous problem solving activities and retrieve them when they become,

relevant.

Novices have difficulty coordinating their activities because of

ineffective retrieval strategies. Because they do not recognize the

Implications of potential Interactions, novices are often unable to correctly

interface subproblems. They also fall to retrieve and Incorporate Information

acquired in the classron and are unable to Integrate Information generated

during earlier parts of the solution attempt with later efforts. Thus, they

do not generate a consistent and well-Integralcd solution to the problem.

The variations in performance, both within and between levels of

expertise, demonstrate the complexities of learning the design schema.

Basically, the schema is learned through actuol experience in doing software

designs; textbook knowledge Is not sufficient. The experts' years of

experience enable the procedures of the scheme to become automatic, freeing

the designer to focus more on the detall- of the specific problem. As the more

sophisticated processes of the schema develop, the designer is able to deal

more successfully with complex problems.
,'

The differences in the ability to use th" decomposition process

U' demonstrate that the schema develops In stages. The levels along this

continuum seem to correspond to Incremental Improvements in a designer's

understanding and control of the decompositio| process. Novices first

understand that the problem has to be broken down into smaller parts, although

I. they do not have a good understanding of the nature of those parts. Next they

add the Idea that the breakdown should orcur *Teratively; that is, they should
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go through several cycles of breaking things down. At the next level, they

acquire the ability to do the decomposition in terms of meaningful

subproblems, and, finally, to recursively apply this strategy. The mature

design schema would include at least the following additional processes:

refinement of understanding, retrieval of known solutions, generation of

alternatives, and critical analysis of solution components.

The processes people use to solve complex problems in their field of

expertise are Important to the understanding of the development of that skill.

In software design, these processes appear to be specialized versions of more

general methods, which are highly organized and automatic. While these

processes superficially resemble the default methods, they are so strongly

tailored to the specific domain that they should be considered distinct

methods In their own right. For any sufficiently complex and well-learned

skill, these kinds of organizational structures would seem to be necessary. A

crucial question, which remains to be addressed, Is what types of skills lend

themselves to the development of such structures.

I!
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DESIGN SCHEMA RULES: SELECTION RULE

DESIGN SCHEMA RULE 1:

IF (no current subprobl i exists)
AND (any unsolved subproblems on ageiiGa)

THEN (select highest priority subproblem or, If multiple
subproblems at highest priority, select next
subproblem in breadth-first order at highest
priority and make it new current subproblem)

DESIGN SCHEMA RULES: SOLUTION MODEL DERIVATION PROCESS

DESIGN SCHEMA RULE 2:

IF (p is current subprolem)
AND (solution model for p does not exist)

THEN (set goal to create solution model for p)

DESIGN SCHEMA RULE 3:

IF (goal to create solution rodel for p)
AND (p Is not well understood)

THEN (retrieve information relevant to p and refine
understanding of p)
AND (add new subpioblrn pt to agenda)
AND (make p' curront .ubproblem)

DESIGN SCHEMA RULE 4:

IF (goal to create solution model for p)
AND (p Is underslood zs "trivial")

THEN (assert that p is solved)
AND (delete p as currert subproblem)

DESIGN SCHEMA RULE 5:

IF (goal to create sol ution model for p)
AND (p Is understood as "complex")

THEN (define solution model fcr p)

Figure 1. A production system representation of the design
schema control processes.

51

7.



DESIGN SCHEMA RULES: SOLUTION RETRIEVAL PROCESS

DESIGN SCHEMA RULE 6:

IF (solution model for p exists)
THEN (search memory for potential solutions which

match critical features of solution model
for p)

DESIGN SCHEMA RULE 7:

IF (potential solution s to problem p is found)
THEN (evaluate applicability of s)

DESIGN SCHEMA, RULE 8:

IF (potential solution s to problem p is highly
applicable)

THEN (assert that p is solved)
AND (delete p as current subproblem)

DESIGN SCHEMA RULE 9:

IF (potential solution s to problem p Is moderately
applicable)

THEN (add to agenda new subproblem pt created from
solution model for p augmented by s)
AND (make pt current subproblem)

DESIGN SCHEMA RULE 10:

IF (potential solution s Is weakly applicable)
THEN (reject potential solution s)

DESIGN SCHEMA RULES: REFINE SOLUTION MODEL DECOMPOSITION

DESIGN SCHEMA RULE 11:

IF (no potential solution to problem p Is found)
THEN (expand solution model for p into well-defined

subproblems using understanding and evaluation
processes as needed)
AND (add each new subproblem generated

to agenda)

Figure 1. (Contlnud)
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PAGE-.KEYED INDEXING SYSTEM

BACKGROUND. A book publisher requires a system to produce a page-keyed
Index. This system will accept as input the source text of a book and produce
as output a list of specified index terms and the page numbers on which each
Index term appears. This system Is to operate In a batch mode.

DESIGN TASK. You are to design a system to produce a page-keyed Index.
The source file for each book to be Indexed Is an ASCII file residing on disk.
Page numbers will be Indicated on a line in the form /*NNNN, where /* are
marker characters used to Identify the occurrence of page numbers and NNNN Is
the page number.

The page number will appear after a block of text that comprises the body
of the page. Normally, a page contains enough Information to fill an 8 1/2 x
11 Inch page. Words are del imited by the fol lowing characters: space, period,
comma, semi-colon, colon, carriage-return, question mark, quote, double quote,
exclamation point, and line-feed. Words at the end of a line may be
hyphenated and continued on the following line, but words will not be
continued across page boundaries.

A term file, containing a list of terms to be Indexed, will be read from
a card reader. The term file contains one term per line, where a term Is 1 to
5 words long.

The system should read the source file and teim file and find all

occurrences of each term to be Indexed. The output should contain the Index
terms listed alphabetically with the page numbers following each term in
alphabetical order.

Figure 2. The text of the page-keyed indexer problem.
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